Total Pageviews

Monday, June 27, 2016

Arithmetic & Geometric progression

Arithmetic&Geometric progression

 In mathematics, an arithmetic progression (AP) or arithmetic sequence is a sequence of numbers such that the difference between the consecutive terms is constant. For instance, the sequence 5, 7, 9, 11, 13, 15 … is an arithmetic progression with common difference of 2.
If the initial term of an arithmetic progression is  and the common difference of successive members is d, then the nth term of the sequence () is given by:
and in general
A finite portion of an arithmetic progression is called a finite arithmetic progression and sometimes just called an arithmetic progression. The sum of a finite arithmetic progression is called an arithmetic series.
The behavior of the arithmetic progression depends on the common difference d. If the common difference is:
  • Positive, then the members (terms) will grow towards positive infinity.
  • Negative, then the members (terms) will grow towards negative infinity.

geometric progression

n.
sequence, such as the numbers 1, 3, 9, 27, 81, in which each term is multiplied by the same factor in order to obtain the following term. Also called geometric sequence.

A sequence of numbers in which each number is multiplied by the same factor to obtain the next number in the sequence; a sequence in which the ratio of any two adjacent numbers is the same. An example is 5, 25, 125, 625, ..., where each number is multiplied by 5 to obtain the following number, and the ratio of any number to the next number is always 1 to 5. Compare arithmetic progression.


Examples


https://www.youtube.com/watch?v=gua96ju_FBk




References:




















3 comments:

  1. to tell u the truth, I totally hate arithmetic! but seeing this turns out interesting. WELL DONE!

    ReplyDelete
  2. thank you. this really help me.MUAHHH

    ReplyDelete
  3. Thanks, I'm able to understand this topic with the help of your notes.

    ReplyDelete